Smith Looks for Other Ways to Make Ethanol

Analytical chemist uses Raman imaging to study cell structure of plants to attempt to maximize conversion to ethanol.

Skyrocketing gasoline prices and growing concern over global warming has spawned massive growth of the biofuel industry, particularly ethanol production. While corn has been the major raw material for producing ethanol, producers are looking for other more cost effective and sustainable crops and researchers at the U.S. Department of Energy's Ames Laboratory are looking at a novel way to help them determine what type of plant material offers the best solution.

Analytical chemist Emily Smith plans to use Raman imaging to study plant cell structure to determine which crops offer the right combination of cell wall composition and degradation to maximize the materials' conversion to ethanol. If successful, a simplified version of the test could even be used in the field to determine if plants were at the prime stage for harvest.

"Just like vintners monitor and test the sugar content of their grapes in the field, biofuel producers could potentially use this technology to determine if their crop was at optimal development for conversion to ethanol," said Smith, who is also an Iowa State University assistant professor of chemistry.

Several Plant Materials Used

Smith specifically plans to screen the lignin, hemicellulose and cellulose content of biofuel plant stocks, such as switchgrass, Miscanthus (a subtropical perennial grass that can grow 13 feet high), corn, and poplar and willow trees. Lignin interferes with enzymatic conversion of polysaccharides to ethanol, so Smith will use the imaging to help select plant stocks that have low lignin content.

"We hope to find out if lignin content changes over time, with different growing conditions, or with different stock material," Smith said, "so we can determine if there is an optimal time to harvest a particular crop."

Plant material for the project will be provided by collaborator Ken Moore, Iowa State University agronomy professor and expert in biomass crop systems.

Many Uses For This Technology

While the scope of this project will be used to study biofuel crops, Smith said the technology could also be used to study other plant materials, such as those used for pharmaceuticals.

Smith has been using the Raman imaging technology to study animal and insect proteins and said it wasn't a "big leap" to study plant material.

"There is obviously a lot of interest in biofuels right now," she said. "Given the number of good researchers on campus working in this area, it was an easy decision to get involved in this project."

Smith's work is being jointly funded through a two-year grant from ISU's Plant Science Institute and by Ames Laboratory with royalty revenues from other research successes. George Kraus, Ames Laboratory's Director of Bio-related Initiatives, called the collaboration a great first step.

"This is a wonderful opportunity to bring the technological expertise of Ames Lab researchers to bear in solving a problem that's a roadblock to moving biofuels to the next level," Kraus said. "We hope to be a partner in similar projects in the future so that other researchers can take advantage of the capabilities that exist within Ames Laboratory."

Hide comments

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish