Study: Predators Can Delay Pest Resistance to Bt Crops

Study: Predators Can Delay Pest Resistance to Bt Crops

Natural enemies are important for suppressing pest populations, study finds.

Pests' steady exposure to Bt crops has prompted concern that resistance could develop more quickly than some expect.

But a new study funded by the UDSA and the Special Research Projects for Developing Transgenic Plants in China and completed by Cornell University has a counter to that concern: natural pests.

Cornell research shows that the combination of natural enemies, such as ladybeetles, with Bt crops delays a pest's ability to evolve resistance to these insecticidal proteins.

Natural enemies like this ladybird beetle are important for suppressing pest populations, study finds. (Cornell photo)

"This is the first demonstrated example of a predator being able to delay the evolution of resistance in an insect pest to a Bt crop," said Anthony Shelton, a professor of entomology at Cornell University's New York State Agricultural Experiment Station in Geneva, N.Y., and a co-author of the paper.

Related: Farmers Concerned About Bt-Resistant Corn Rootworm

Bt is a soil bacterium that produces proteins that are toxic to some species of caterpillars and beetles when they are ingested, but have been proven safe to humans and many natural enemies, including predaceous ladybirds. Bt genes have been engineered into a variety of crops to control insect pests.

Since farmers began planting Bt crops in 1996 with 70 million hectares planted in the United States in 2012, a Cornell announcement said, there have been only three clear-cut cases in agriculture of resistance in caterpillars, and one in a beetle.

"Resistance to Bt crops is surprisingly uncommon," Shelton comments.

To delay or prevent insect pests from evolving resistance to Bt crops, the U.S. Environmental Protection Agency promotes the use of multiple Bt genes in plants and the practice of growing refuges of non-Bt plants that serve as a reservoir for insects with Bt susceptible genes.

"Our paper argues there is another factor involved: the conservation of natural enemies of the pest species," said Shelton. These predators can reduce the number of potentially resistant individuals in a pest population and delay evolution of resistance to Bt.

~~~PAGE_BREAK_HERE~~~

In the study, the researchers set up large cages in a greenhouse. Each cage contained Bt broccoli and refuges of non-Bt broccoli. They studied populations of diamondback moth larvae, a pest of broccoli, and their natural enemies, ladybird beetles, for six generations.

Cages contained different combinations of treatments with and without predators, and with and without sprayed insecticides on the non-Bt refuge plants.

The results showed that diamondback moth populations were reduced in the treatment containing ladybird beetles and unsprayed non-Bt refuge plants. Also, resistance to Bt plants evolved significantly slower in this treatment.

In contrast, Bt plants with no refuge were completely defoliated in treatments without ladybirds after only four to five generations, showing rapid development of resistance in the pests. In the treatment with sprayed non-Bt refuge plants and predators, diamondback moth populations were reduced, but the larvae more quickly evolved resistance to the Bt plants.

"These results demonstrate the effectiveness of Bt plants in controlling the pest population, the lack of effect of Bt on the predators and the role predators play in delaying resistance to Bt plants in the pest population," said Shelton.

Related: ERS Report Recaps 15 Years of GMOs

Xiaoxia Liu, a visiting scientist from China Agricultural University who worked in the Shelton lab, is the lead author on the paper, which was published March 3 in the journal PLoS One.

Co-authors include Elizabeth Earle, Cornell professor emeritus of plant breeding and genetics, who developed the Bt broccoli; Richard Roush, a researcher at the University of Melbourne, Australia, and former Cornell entomologist from 1987 to 1995; and David Onstad, Ph.D. '85, a senior research scientist at DuPont.

Source: Krishna Ramanujan,Cornell

TAGS: Weeds
Hide comments

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish